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In underground explosions executed in the interests of ejection, downcomer funnel or  bulging 
hillock formation, the soil properties influence not only the quantitative parameters substan- 
tially, but also the qualitative pattern of the explosion. Thus, under the same conditions of 
charge embedding and power, a downcomer funnel or  bulging hillock can be formed depending 
on the properties of the rocl~ The majority of explosions are  performed in hard rock. Hence, 
the model of the soil should be suitable to describe its fundamental properties. A model of 
rocky soil is presented in this paper, the scheme for a numerical computation of the problem 
is described, and resul ts  of certain computations are presented. 

1. An unruptured medium is considered elastic. Rupture sets in instantaneously upon the attainment of 
definite cr i ter ia .  Right after rupture, which occurs in brittle material under insignificant strains, the pulver- 
ized rock consists of separate compactly contiguous pieces. In this state its volume density is 1.5-1.7 t imes 
greater  than in rubble fill. The compact fractured medium and loose rubble differ quite radically in the ef- 
feotive value of the internal friction and ~100 times in the volume compressibility. It is hence important to 
*~ke account of the gradual change in the properties of the ruptured medium as it loosens. 

In both states, before and after rupture, the medium is considered isotropic. The pressure and degree 
of looseness are taken as parameters  of the state in this model. The influence on the mechanical properties 
of the size of the pieces, their  shape, and temperature are negleoted. 

The equations of state of a ruptured medium are  written in differential form. The change in density is 
defined by the equation 

dp/9 = d p / K , : ( p ,  p) -- ~I)(p. p)~7:_,~?t (1.1) 

where J2 is the second invariant of the strain rate  deviator. 

The f i rs t  t e rm on the right corresponds to pure volume strain, while the second describes the dilatancy 
effect. An analogous equation was examined in [1] in application to friable media and soft soils. In this paper 
(1.1) is extended to all states of ruptured rocky soil, including rubble, and a state with dense packing. Hence, 
K1, 2 and # are understood to be strongly varying functions of their  arguments. The irreversibili ty of the 
volume strain is taken into account by the fact that the absolute value of the volume compressibility Kt, 2 de- 
pends on the sign of dp. In tlie construction of the function ~(p, p) it is assumed for simplicity that: 

a) for dp= 0 the shear strains result  only in loosening of the substance; 

b) the loosening intensity vanishes at the extreme curve P2(P) (Fig. 1) corresponding to monotonic com- 
pression of the loosest rubble. The domain of possible states of the ruptured medium is shown in Fig. 1. 

Chelyabinsk. Translated from Zhurnal Prikladnoi Mekhaniki I Tekhnicheskoi Fiziki, No. 3, pp. 153-160, 
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F o r  an unruptured  medium KI=K 2 and r p )=0 ;  i . e ,  t h e r e  is no loosening,  and the p r e s s u r e  is a single-  
valued function o f  t he  density P=PI(P) .  At  high p r e s s u r e s  the c u r v e s  P2(P) and PI(P) join.  Under these  a s -  
sumptions~ points on the  (p, p) plane cor responding  to the s ta te  of the rup tu red  medium, a r e  included between 
P2(P), PI(P ), andp= 0 within the  cu rv i l i nea r  t r iangle ,  where  the passage  between any two points is possible be-  
cause  of the dif ferent  combination of volume and shear  s t ra ins .  

If p= 0 in the t rave l  state,  the mean volume density can be l e s s  than P02~ The instantaneous magnitude 
of the volume densi ty does not yield a conception of the na ture  of the  piece  a r rangement .  The value of the 
density p * is taken as  the s ta te  pa r ame te r ,  and when it is r eached  in this  substances i f t m i f o r m l y c o m p r e s s e d ,  
a posi t ive p r e s s u r e  occur s .  The computat ion of  p * is p e r f o r m e d  by means  of an equation analogous to {1.1): 

dg*/o* = --O(0, p*)V-~-~dt m_ --~P(p*)dz. (1.2) 

Integrat ion of (1.2) yields p* (z), which should sa t is fy  the  conditions dp * / d z  < 0 and p*(z) ~P02 as  z - - ~ .  

The connect ion between the devia tors  is wri t ten by analogy with the P r a n d t l - R e i s s  e l a s t i c - p l a s t i c  model,  
hence the  condition for  loading emergence  on the sur face  has the fo rm 

T i k T i h  = / ' - ( p ,  p), (1.3) 

where  T ik is the s t r e s s  devia tor  and f(p, p) =z(p ,  p)p. The function z(p ,  p) is se lec ted  so as  to t r a n s f e r  a 
diminution in the internal  f r ic t ion  coeff ic ient  as  the medium loosens  and goes o v e r  to a liquid model at high 
p r e s s u r e s .  The possibi l i ty  of computing the motion of nonrocky soils  by m o r e  s imple models  is embedded in 
the  p r o g r a m .  In a s t rong explosion the  nearby zone is cons ide red  in a gasdynmnic approximat ion by the equa-  
t ion of s ta te  of  Mie- -Grune isen  type with the t he rma l  par t  of the p r e s s u r e  taken into account.  

2. A diffferemce methodology for  solving the equations of motion of a continuous medium is c r ea t ed  to 
analyze underground explosions with the proposed soil model .  The initial d i f ferent ia l  equations a r e  wri t ten  
in a mixed E u l e r - L a g r a n g e  sys tem of  coord ina tes ,  analogous to that  proposed  in [2]. This  sys tem is f~rmed 
by c losed  Lagrange  l ines  r =cons t  and r ays  emerging f ro m  a common cen te r  ~ =eons t .  

The select ion of such a sys t em is due f i r s t  to the geome t ry  of the problems being computed and, 
secondly,  to the  p r e sence  of contact  boundaries~ Moreove r ,  the d i f fe rence  s chemes  using a pure ly  Lagrangian 
r ep resen ta t ion  of  motion desc r ibe  the behavior  of  f r e e  and contact  boundar ies  poor ly .  

The spher ica l  (R, ~, r coord ina te  sys tem with c e n t e r  in a cavi ty  f i l led init ially with explosion products  
is se lec ted  as the external  (fixed) coordinate  sys tem.  

With r e spe c t  to the  solution of the different ial  equations,  it is assumed that  it p o s s e s s e s  axial symmet ry .  
All this  pe rmi t s  writ ing t he  re la t ion  between the  external  and the computat ional  coordinate  sys tems in the 
fo rm  

t~ = R ( r ,  0 ,  t ) ,  ~ = O. 

The components  

u = u~OB/Or,  u = u ~ 

a r e  se lec ted  as  the des i r ed  veloci t ies ,  where  u r ,  u ~ a r e  the  cont ra invar ian t  components  of the veloci ty vector .  

The select ion of such var iab les  a s s u r e s  the continuity of the veloci ty  components  of  u on the contact  
boundary and r e duces  the question of the approximat ion of the t r a n s f e r  t e r m  to an equation for  
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OR/Ot = u'OR/&. 

Analogous cons idera t ions  specify the select ion of the s t r e s s  t enso r  components  p t k  and the re la t ion  
between the cont~avar iant  and the  "eompntedw const i tuents  is given by the  re la t ionships  

pIi=(R,)~p,,  pt~ ~ RrpTe, p2~ = pea, p~ = pr 

(here  p r r  p r ~  p ~  p r162  a r e  con t r ava r i an t  eonstitue~ts)o 

Hence  p i k = - p g i k + T i k ,  where  p is the  p r e s s u r e ,  G ={gil~ is the met r i c  t ensor ,  and T ={T ik} is the s t r e s s  
dev ia tor .  

The  s t r e s s  s ta te  in the soil model  cons ide red  depends on the loading h i s tory ,  toe., t he re  is the need to 
follow individual pa r t i c l e s  of the medium.  Hence ,  a th i rd  coordinate  sys tem,  a Lagrangian sys tem,  is 
introduced; the  coord ina te  r was int roduced ea r l i e r ,  and the  t r a n s f e r  equation 

Ox/Ot ~- vOT+/O0 = 0 

ts  sat isf ied fo r  the  o the r  coord ina te  X, coorespondlng  to pa r t i c l e  motion in the channel fo rmed  by the La -  
grangtan l ines  r = coas t .  

T h e r e f o r e ,  the method u se s  t h r e e  coord ina te  sys tems:  external ,  spher ical  (R, ~), computed (r, $),  and 
Laglrangian (r, X). 

The comple te  sys tem of equations becomes  
II,~ [ 

aunt + 2v -g~au _ 2uv -~ne ~- v ~ nll~ = -- g (c,,~ O ,  . _ ._w~i,~ ,,~ ) ~t ap',~t: " .~i,,! O O(P'~'si"a~ Ot 

2 -'- 9 allit 1;~I"- __ p~"- l IH~~  - - 2 1 ; ~ -  II ~- 
1r : " :  " a ir  " It g -  (R~sinocosO - -  I I - - i ~ " - O ) p ' J %  

.J:: 0~" I 2HO sin r t ( ~l ,l~ 
:; -' v--~- _- 2uv /~ /--F z'~ g I-T- ~. ~ o,q' (2.1) 

,,(,;~sin,',) ! . 4,,, ~. [4,if ~"0) 
; d~ ~i/, ~ It \ ~ Olt p.-,2 ._ p:~si~ ~co:O]. 

e,. .)p , d~ d .  (Jllil 2pu 2pt'll,~ 
" ~ pv--g-~-4- I1 § .~-oc,.'t~O-.~L :, ~ ; ~  P ~ - P ~  . , 

-~T=~,  -~--- ' .-+~T-.:0, ~ ,K  ~ / - - . ~ ( P , P )  l �9 k T - ~  '/7--" : - - 2 u V . . , / r  , . T/Tr. 

where  g is the f r e e - f a l l  acce le ra t ion ;  p,  density; p, p r e s su re ;  T, s t r e s s  deviator;, V, s t ra in  r a t e  deviator;  
(dT/d t )  r ,  t e n so r  co r re spond ing to  the chmnge in s t r e s s  s ta te  because  of ro ta t ion o f  a ma te r i a l  pa r t i c l e  (the 
f o r m  of this  t e n s o r  will be p r e sen t ed  below). The coeff ic ient  ~, d i f fers  f rom zero for  inelastic s t r e s s  and 

is the shea r  modulus .  

The  boundary condit ions fo r  the sys tem of  equations p resen ted  a r e  given on the boundary of the cavity,  
on the f r e e  surface ,  and on some l ine sufficiently ~ r  f r o m  the c e n t e r  of the explosion. All these  boundar ies  
coincide  with the Lagr~n~mn l ines  r =cons t .  

The  initial sys tem of d i f ferent ia l  equations (2.1) is  approximated  by a sys tem of  explici t  d i f fe rence  
equations.  The  domain o f  the solution in the  planes  (r, ~) and (r, X) is hence par t i t ioned into rec tangula r  ce i l s .  

The  ce l l s  coincide  at  the initial instant, and one mesh  l a t e r  s t a r t  to move re la t ive  to one another .  The 
separa t ion  of  the computed quanti t ies  is shown in Fig.  2, where  ABCD is the computed cel l ,  A1, Bi, C1, D l is 
the  Lagrangian  cel l ,  13(3 is  an r - c o o r d i n a t e  l ine,  AB is a 0 -coord ina te  line, the point EC is the cen te r  of the 
computed cel t ,  and EL is the cen t e r  of  the Lagrangian  cel l .  

The  t r a n s f e r  t e r m s  in the d i f fe rence  equations a r e  approximated by one-s ided  d i f fe rences  taking account 
of  the sign of the veloci ty v; the remain ing  de r iva t ives  with r e s p e c t  to the space a r e  approximated by cent ra l  
d i f fe rences .  The d i f fe rence  equations a r e  not p resen ted  because  of awkwardness.  The o r d e r  of determining 
the  des i r ed  mesh  functions is  the  following: 

u = j l  u, v, p ' ,  p, R, t , 
"+' ( . . . . . .  ) 
v = / 2  u,v,  pfk, p , R , t  , 

B = ] s ~ u , R , t ,  X = / ~ k v , 7 . ,  T ,  

w h e r e  T iS the  t i m e  spacing .  
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(n+..l 
The  components  of the s t ra in  r a t e  devia tor  ~V,h/ at the middles of the computed ce l l s  a r e  de te rmined  

by means  of the  computed ve loc i t ies .  The components  of the veloci ty  deviator  at the middles  of  the Lagrangian 
ce l l s  must  be known to de te rmine  the  s t r e s s  t en so r .  These  components  can be obtained by a para l le l  t r a n s f e r  
of  the veloci ty  devia tor  f r om the adjacent  computed ce l l s .  To (A~)2 accuracy ,  the para l le l  t r a n s f e r  r educes  
to a s imple component -by-component  interpolat ion of  the  s t ra in  r a t e  devia tor .  

of  the Lagrangian cells (the coord ina tes  ~'), the i r  volume and, t he re fo re ,  By knowing the  n e ~ v  position 

the i r  density, can  be de te rmined .  In par t i cu la r ,  the volume can be de te rmined  by means  of the addition formula  
n +  1 n +  l n +  1 

hIu = - -  2~/3 (AB 3) (h cos b), p = M / A W ,  

where  M is the mass  enclosed in the Lagrangian  ce l l ,  

The new s t r e s s  s ta te  in the middles  of  the  Lagrangian  ce l l s  is  de te rmined  in conformi ty  with the equa- 
t ions of state.  I f  formula  (1.1) is valid fo r  the p r e s s u r e  in any coordinate  sys tem,  then the t ensor  re la t ionship  

Z Y  + d T  dt  = 2t~V + (dT/d t ) r .  (2.2) 

is valid for  the s t r e s s  devia tor .  

The coeff ic ient  k is  d i f fe ren t  f rom zero when the point in s t r e s s  space fal ls  on the loading ~nfface (1.3). 
In this  case ,  the devia tor  components  ~ i k  obtained f rom (2.2) fo r .k  = 0 a r e  multiplied by a ce r t a in  constant  C 
such that  the  image point r ema ins  on th is  sur face ,  o r  in o the r  words,  the constant  C is de te rmined  f rom the  
equation 

C " : r " ' ~ a  = / ( p .  ~), i f  ~,',~2., > / ( p ,  p). 

The component (dT/dT) r is  associa ted  with the condition when, re turning with an angular veloci ty  % 
the par t i c le  t ensor  of the d i rec t ion  also r e tu rns  with the same angular veloci ty .  It can be shown that this 
t enso r  is expres sed  through the t en so r  T and the coaxial  t ensor  ~ by the following: 

(dT 'd t ) r  = Y * Q --O.. T,  

where  the a s t e r i s k  denotes  the  convolut ion r e l a t i ve  to one pa i r  of  subscr ip ts .  

The  components  of the t ensor  fl in ou r  coord ina te  sys tem have the fo rm 

.o =: (o/I ~-~ 0 , -% = [It;,t 
\,, 0 0 

) " a v  

(0 = 0.5 \ t:0~'~ 1: air 

The  e~press ion  for  the  total  der iva t ive  d T / d t  includes the  der iva t ives  o f  the basis  vec to r s  with r e s p e c t  
to the t ime also [3]. Let  us  p resen t  the comple te  express ion  for  the de terminat ion  of  T 11, say 

r - ,  : �9 *t~ ] + v t , m- / J: a e  + - - f f " - ~  + ~ u . 

T h e  s t r e s s  t en so r  is c o n s t r u c t e d  by means  of  the newly computed p r e s s u r e  and s t r e s s  devia tor  c o m -  
ponents,  and is  then in terpola ted  to the  middles  of the  computed ce l l s .  

To compute  t he  shocks ar t i f ic ia l  v i scos i ty  in invar iant  fo rm is added to the  p re s su re :  

q <' .'~ ~ r i- q.,p rain _X[t " d~,B 2 

Moreove r ,  t e r m s  of the fo rm a ~ / a R  ~, a 2u/aS2,  e tc ,  with coeff ic ients  propor t ional  to the  t~me spacing 
r a r e  added to the  r ight  s ides  of  the  equations for  u and v.  T h e s e  t e r m s  p e r f o r m  the same ro l e  a s  does the  
v i scos i ty  t e n so r  in the me thod  in [4]. 

3. The  poss ib i l i t ies  of  the method and the  equation of  s ta te  desc r ibed  above for  the  soil can  be  i l lus t ra ted  
by the  r e s u l t s  of computat ions  of  the  foUowing p r o b l e m s .  
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CompuLation of  the Simultaneous Explosion of Two C barges. The explosion of two charges separated by 
the distance l can be considered as the explosion of one charge, removed a distance 1/2 from the rigid wall. 
(The plane of symmetry, equally remote from both charges,  is  naturally considered as a rigid wall since there 
are no normal displacements thereon.) Unique effects caused by the interaction of the stress  fields of the 
adjacent charges occur in a pairwtse explosion. Among such effects might be the distortion of the spherical 
shape of the camouflet cavity, the change in configuration of the destruction zones in comparison with a spheri- 
cally symmetric explosion, the c losure of the cavities,  and the extrusion of the soft from the tee:ion between 
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the charges.  The parameters  of t h e  soil equation of state correspond to granite in the computation performed. 
The energy of the explosion in the initial state is distributed uniformly over the volume of a sphere with the 
reduced radius 1.84 m/kTl/8,  which corresponds to the radius of the evaporation zone in granite determined 
by Butkovich [5]. The explosion products are  considered an ideal gas with ~/=5/3~ The results of the compu- 
tations are preseuted in Figs .  3 and 4. The characteristic velocity field caused by the wave interaction is 
sho ,wn in Fig. 3. The destruction zones for the computation wif~ a reduced separation of the charges 52 m /  
kT 1/3 are  displayed in Fig. 4 (1 is for soil destroyed by shear s t resses,  2 is soil destroyed by tensile s tresses,  
and 3 is undestroyed substance). 

Computation of a Loosening Explosion. The formation of hillocks from destroyed and lqosened rock [6] 
is o b s e ~ e d ~ n  ~ l o s - ~ ~  ~ e w ~ - t h  a reduced depth of embedding above 60 m / k T  1/3. The singularity 
of a loosening explosion is the predominauce of the fission mechanism in the formation of a true funnel. The 
gas acceleration phase is less  definite, which permits termination of the computation at comparatively small 
displacements of the free surface. The computation of an explosion in granite with a reduced degree of em- 
bedding, 84 m/kT 1/3, was performed. The problem was computed up tothe completion ofcovity and destruction 
zone formation. The steady boundary of the fission funnel and the velocity field in the soil are shown in Fig. 
5 (AB is the bottom surface, CD is the profile of the pile, but the camouflet cavity is not shown). The shape 
of the pile obtained as a result  of the computation (Fig. 5) recal ls  the loosening hillock in the explosion nSalki,~ 
however, ~levitation n of the cavity along the cave-in column, which results  in funnel formation at the center 
of the pile in a natural explosion, was not taken into account in the computation. 
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